[Practical Deep Learning for Coders - Practical Deep Learning](https://course.fast.ai/)
Machine Learning with PyTorch and Scikit-Learn [Amazon.in](https://www.amazon.in/Machine-Learning-PyTorch-Scikit-Learn-learning/dp/1801819319/?_encoding=UTF8&pd_rd_w=pY8lK&content-id=amzn1.sym.1dbfbf40-4af3-4617-869f-d5f26f948dda%3Aamzn1.symc.fddc876e-12b4-4705-b1ac-5d8fc5d10d1f&pf_rd_p=1dbfbf40-4af3-4617-869f-d5f26f948dda&pf_rd_r=6PW1BH914AEBPVCKWQH1&pd_rd_wg=AwFXF&pd_rd_r=ad6fea0c-1a38-4813-8faa-4060670a294f&ref_=pd_hp_d_atf_ci_mcx_mr_ca_hp_atf_d)
[https://probml.github.io/pml-book/book1.html](https://probml.github.io/pml-book/book1.html)
[Understanding Deep Learning](https://udlbook.github.io/udlbook/)
Artificial Intelligence Math Olympiad (AIMO) with LLMs
https://x.com/Thom_Wolf/status/1809895886899585164?t=57Zl4N1dg0MYFZbR2JDjyg&s=19
Hands-on Machine Learning with Scikit-Learn, Keras & TensorFlow Concepts, Tools, and Techniques to Build Intelligent Systems
[http://14.139.161.31/OddSem-0822-1122/Hands-On_Machine_Learning_with_Scikit-Learn-Keras-and-TensorFlow-2nd-Edition-Aurelien-Geron.pdf](http://14.139.161.31/OddSem-0822-1122/Hands-On_Machine_Learning_with_Scikit-Learn-Keras-and-TensorFlow-2nd-Edition-Aurelien-Geron.pdf)
[The Complete Data Science Pathway Courses by ML+](https://edu.machinelearningplus.com/s/pages/ds-career-path)
Deriving 3D Rigid Body Physics and implementing it in C/C++ (with intuitions) [https://www.youtube.com/watch?v=4r_EvmPKOvY](https://www.youtube.com/watch?v=4r_EvmPKOvY)
Transformer [https://www.youtube.com/watch?v=rPFkX5fJdRY](https://www.youtube.com/watch?v=rPFkX5fJdRY)
Engineering Math: Differential Equations and Dynamical Systems [Než budete pokračovat na YouTube](https://www.youtube.com/playlist?list=PLMrJAkhIeNNTYaOnVI3QpH7jgULnAmvPA)
emergence
[[2402.09090] Software in the natural world: A computational approach to hierarchical emergence](https://arxiv.org/abs/2402.09090) https://x.com/_fernando_rosas/status/1758096442810405162
https://journals.aps.org/pre/abstract/10.1103/PhysRevE.108.014304
generalization [[2402.03507] Neural networks for abstraction and reasoning: Towards broad generalization in machines](https://arxiv.org/abs/2402.03507)
Platonic representation hypothesis
[Než budete pokračovat na YouTube](https://www.youtube.com/live/1_xH2mUFpZw?si=CpwyJKCcmGhE4dIK)
Fine-tuning
Program synthesis
[a minimalist guide to program synthesis | a bare minimum introduction to modern program synthesis](https://evanthebouncy.github.io/program-synthesis-minimal/)
https://towardsdatascience.com/foundation-models-in-graph-geometric-deep-learning-f363e2576f58
Semantic search for mathematical models of intelligence on arxiv [arXiv Xplorer](https://arxivxplorer.com/?query=https%3A%2F%2Farxiv.org%2Fabs%2F1911.01547)
Claude Interpreter: Taking Safe AI to Market with Alex Albert of Anthropic [https://www.youtube.com/watch?v=5cQouQZm9fI](https://www.youtube.com/watch?v=5cQouQZm9fI)
Noether's Learning Dynamics: Role of Symmetry Breaking in Neural Networks
[[2105.02716] Noether's Learning Dynamics: Role of Symmetry Breaking in Neural Networks](https://arxiv.org/abs/2105.02716)
Evolutionary Implications of Self-Assembling Cybernetic Materials with Collective Problem-Solving Intelligence at Multiple Scales
https://www.mdpi.com/1099-4300/26/7/532
Hutter formalism of AGI
[https://www.youtube.com/watch?v=7TgOwMW_rnk&feature=youtu.be](https://www.youtube.com/watch?v=7TgOwMW_rnk&feature=youtu.be)
https://x.com/IAmTimNguyen/status/1788964432632066457
Artificial life
[Leniabreeder](https://leniabreeder.github.io/)
https://x.com/maxencefaldor/status/1803803486179434642?t=6eJjBHLt95EH7n7GBmpcIA&s=19
https://x.com/BertChakovsky/status/1804040248332284107?t=WUOj_TMy0BhTAgNbseI0OQ&s=19
My philosophical glue is better than your philosophical glue! (Gluing together predictive or/and nonpredictive models)
PCA
[Reddit - The heart of the internet](https://www.reddit.com/r/learnmachinelearning/comments/1dlnx4o/best_mlai_online_program/)
[Reddit - The heart of the internet](https://www.reddit.com/r/learnmachinelearning/comments/1d0bksx/i_scraped_and_ranked_ai_courses_here_are_the_best/)
Reverse engineering world models
[[2406.03689] Evaluating the World Model Implicit in a Generative Model](https://arxiv.org/abs/2406.03689)
https://x.com/keyonV/status/1803838591371555252?t=OvX5fqwR7HeCgMZ1g3RHQw&s=19
Solutions to ARC
[https://youtu.be/jSAT_RuJ_Cg?si=a2WPVq-d73IUtmfg](https://youtu.be/jSAT_RuJ_Cg?si=a2WPVq-d73IUtmfg)
Accelerating grokking
[[2405.20233] Grokfast: Accelerated Grokking by Amplifying Slow Gradients](https://arxiv.org/abs/2405.20233)
https://x.com/_ironjr_/status/1798733867303772607?t=ap-se3Q1rJ5IRm5veEMHKw&s=19
https://x.com/davidad/status/1804550585124864123?t=3p6pDrDs3TSBCuazqoHQWg&s=19
Sutton
Reinforcement Learning for Continuing Problems Using Average Reward
https://x.com/RichardSSutton/status/1804597434070507825?t=ypAZwro-ji-TBA9nR-paLw&s=19
AI books
https://x.com/FrnkNlsn/status/1804396517748543593?t=1aDV-r4rYrb8S4qXoFubrg&s=19
https://x.com/FrnkNlsn/status/1805873981293318424?t=AzVXy42N6wvsgWjKx5hm_A&s=19
Flow matching
Mechanistic interpretability generalization
[[2405.15071] Grokked Transformers are Implicit Reasoners: A Mechanistic Journey to the Edge of Generalization](https://arxiv.org/abs/2405.15071)
Witten [https://www.youtube.com/watch?v=2UQ8teAebcg](https://www.youtube.com/watch?v=2UQ8teAebcg)
https://www.anthropic.com/research/mapping-mind-language-model
https://openai.com/index/extracting-concepts-from-gpt-4/
[https://www.youtube.com/watch?v=8Nyn3_ZWa_U](https://www.youtube.com/watch?v=8Nyn3_ZWa_U)
https://towardsdatascience.com/foundation-models-in-graph-geometric-deep-learning-f363e2576f58
Anthropic interpretability [https://www.youtube.com/watch?v=8Nyn3_ZWa_U](https://www.youtube.com/watch?v=8Nyn3_ZWa_U)
Algebraic topology
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLOROtRhtegr7DmeMyFxfKxsljAVsAn_X4&si=r8MhU6WHfXnCGK2n)
Neural network mechanistic interpretability
Toy Models of Superposition
[A Comprehensive Mechanistic Interpretability Explainer & Glossary - Dynalist](https://dynalist.io/d/n2ZWtnoYHrU1s4vnFSAQ519J)
[Toy Models of Superposition](https://transformer-circuits.pub/2022/toy_model/index.html)
[https://www.youtube.com/watch?v=R3nbXgMnVqQ](https://www.youtube.com/watch?v=R3nbXgMnVqQ) (Nanda)
Supermasks in Superposition
[[2006.14769] Supermasks in Superposition](https://arxiv.org/abs/2006.14769)
INTERPRETABILITY IN THE WILD
[https://arxiv.org/pdf/2211.00593.pdf](https://arxiv.org/pdf/2211.00593.pdf)
Actually, Othello-GPT Has A Linear Emergent World Representation (Nanda)
[Actually, Othello-GPT Has A Linear Emergent World Representation — LessWrong](https://www.lesswrong.com/s/nhGNHyJHbrofpPbRG/p/nmxzr2zsjNtjaHh7x)
[Large Language Model: world models or surface statistics?](https://thegradient.pub/othello)
A Mathematical Framework for Transformer Circuits
[A Mathematical Framework for Transformer Circuits](https://transformer-circuits.pub/2021/framework/index.html)
[https://www.youtube.com/watch?v=KV5gbOmHbjU](https://www.youtube.com/watch?v=KV5gbOmHbjU) (Nanda)
Attention is all you need
[[1706.03762] Attention Is All You Need](https://arxiv.org/abs/1706.03762)
A STRUCTURED SELF-ATTENTIVE SENTENCE EMBEDDING
[A STRUCTURED SELF-ATTENTIVE SENTENCE EMBEDDING | OpenReview](https://openreview.net/forum?id=BJC_jUqxe)
Distributed Representations of Words and Phrases and their Compositionality (Mikolov)
[[1310.4546] Distributed Representations of Words and Phrases and their Compositionality](https://arxiv.org/abs/1310.4546)
Deep Residual Learning for Image Recognition
[[1512.03385] Deep Residual Learning for Image Recognition](https://arxiv.org/abs/1512.03385)
Attribution Patching: Activation Patching At Industrial Scale (Nanda)
[Attribution Patching: Activation Patching At Industrial Scale — Neel Nanda](https://www.neelnanda.io/mechanistic-interpretability/attribution-patching)
In-context Learning and Induction Heads
[In-context Learning and Induction Heads](https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html)
[https://www.youtube.com/watch?v=dCkQQYwPxdM](https://www.youtube.com/watch?v=dCkQQYwPxdM) (Nanda)
The Quantization Model of Neural Scaling
[https://arxiv.org/pdf/2303.13506.pdf](https://arxiv.org/pdf/2303.13506.pdf)
Interpreting Neural Networks to Improve Politeness Comprehension
[Interpreting Neural Networks to Improve Politeness Comprehension - ACL Anthology](https://aclanthology.org/D16-1216/)
Progress measures for grokking via mechanistic interpretability
[[2301.05217] Progress measures for grokking via mechanistic interpretability](https://arxiv.org/abs/2301.05217) (Nanda)
[https://www.youtube.com/watch?v=IHikLL8ULa4](https://www.youtube.com/watch?v=IHikLL8ULa4)
https://twitter.com/NeelNanda5/status/1616590887873839104
Grokking paper
[[2201.02177] Grokking: Generalization Beyond Overfitting on Small Algorithmic Datasets](https://arxiv.org/abs/2201.02177)
A Toy Model of Universality
[[2302.03025] A Toy Model of Universality: Reverse Engineering How Networks Learn Group Operations](https://arxiv.org/abs/2302.03025)
https://twitter.com/bilalchughtai_/status/1625948104121024516
A circuit for Python docstrings in a 4-layer attention-only transformer
[A circuit for Python docstrings in a 4-layer attention-only transformer — LessWrong](https://www.lesswrong.com/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only)
Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive architecture: A critical analysis.
[APA PsycNet](https://psycnet.apa.org/record/1989-03804-001)
Maximal Update Parametrization (μP) and Hyperparameter Transfer (μTransfer)
[GitHub - microsoft/mup: maximal update parametrization (µP)](https://github.com/microsoft/mup)
Spline theory of NNs
[https://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf](https://proceedings.mlr.press/v80/balestriero18b/balestriero18b.pdf)
Counterarguments to the basic AI x-risk case (Katja Grace)
[Counterarguments to the basic AI x-risk case — LessWrong](https://www.lesswrong.com/posts/LDRQ5Zfqwi8GjzPYG/counterarguments-to-the-basic-ai-x-risk-case)
The alignment problem from a deep learning perspective (Ngo)
[[2209.00626] The Alignment Problem from a Deep Learning Perspective](https://arxiv.org/abs/2209.00626)
Superintelligence: Paths, Dangers, Strategies.
[Amazon.co.uk](https://www.amazon.co.uk/Superintelligence-Dangers-Strategies-Nick-Bostrom/dp/0199678111)
Quantum grokking
[https://youtu.be/BtHMIQs_5Nw?si=P7wAtuEtEIO5eJH7](https://youtu.be/BtHMIQs_5Nw?si=P7wAtuEtEIO5eJH7)
Formal mechanistic interpretability
[Compact Proofs of Model Performance via Mechanistic Interpretability — AI Alignment Forum](https://www.alignmentforum.org/posts/bRsKimQcPTX3tNNJZ/compact-proofs-of-model-performance-via-mechanistic)
https://x.com/diagram_chaser/status/1805337592143265801?t=fJdQa3bxJMXhQrqhVUIsMA&s=19
[Research Engineer @ Cartesia](https://jobs.ashbyhq.com/cartesia/c1f51855-9076-409f-a410-88df5d883b28)
[[2310.02299] Discovering Symmetry Breaking in Physical Systems with Relaxed Group Convolution](https://arxiv.org/abs/2310.02299)
Deep learning for physics
https://x.com/yuqirose/status/1805327242790420610?t=u2NlvpRyN-D4ST1jtR5A5g&s=19
https://www.pnas.org/doi/10.1073/pnas.2311808121
Dan Hendricks
Roman Salponsky AI
Davidad mathematics
https://x.com/davidad/status/1805494402497814979?t=ztLu33_c3mgcnd55zIBy9w&s=19
Amplituhedron
in context learning mechanistic interpretability
[In-context Learning and Induction Heads](https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html)
[[2402.13055v1] Identifying Semantic Induction Heads to Understand In-Context Learning](https://arxiv.org/abs/2402.13055v1)
Mechanistic Interpretability for AI Safety -- A Review
[[2404.14082] Mechanistic Interpretability for AI Safety -- A Review](https://arxiv.org/abs/2404.14082)
Semiconductor fabrication
[Než budete pokračovat na YouTube](https://www.youtube.com/playlist?list=PLM2eE_hI4gSDjK4SiDbhpmpjw31Xyqfo_)
[Než budete pokračovat na YouTube](https://www.youtube.com/playlist?list=PLtkeUZItwHK4CUb6QuSOHJqMFjc8ITxmZ)
[Než budete pokračovat na YouTube](https://www.youtube.com/playlist?list=PL4urpCsplnMF5kUm9FPk3iOnzNUnM-8tX)
[Než budete pokračovat na YouTube](https://www.youtube.com/playlist?list=PLY7CknIBnYnBo9qEl1CfTfAeaVRg_3Ley)
MIT deep learning in life sciences
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLypiXJdtIca5sxV7aE3-PS9fYX3vUdIOX&si=A4Kpxy4w2CYuo_18)
ETH Zurich deep learning in scientific computing
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLJkYEExhe7rYY5HjpIJbgo-tDZ3bIAqAm&si=H7RGBCy42PHQrjIu)
Scientific machine learning seminars
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLw74xLHy0_j8DXxAKb15DbgtNvUOeTPbZ&si=vW3HJF_GdlVxKwHE)
Statistics in machine learning
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLZoTAELRMXVMhVyr3Ri9IQ-t5QPBtxzJO&si=Lj2ewGya_ZnGG43_)
Brunton physics informed Machine learning
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLMrJAkhIeNNQ0BaKuBKY43k4xMo6NSbBa&si=wR1J_xXBr6KaGYN8)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLWL3MaEZQ5I2LYm5BAdLYso5wGe9WMNby&si=Nxh86Tuzb2Iwa-5U)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLXmYoJbJ848pkMm9NGZZKXUQJ8XWIXZX8&si=Y3zaPO-Kbz4mHdno)
Physics of machine learning
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLHyI3Fbmv0SfQfS1rknFsr_UaaWpJ1EKA&si=Z-_QDI-43rk4t0L4)
Statistical physics and machine learning
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PL04QVxpjcnjgzMr9ehyZUSkwu0Wr0cF_N&si=M27IgxuhkVghTlxP)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLo9ufcrEqwWE9JNBn1IWfOFHXiqEqur_r&si=7TUwRRpt5bpkM8Ia)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PL04QVxpjcnjhtL3IIVyFRMOgdhWtPn7YJ&si=A0m4FNhUw64uLxs9)
Statistical methods and machine learning in high energy physics
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PL04QVxpjcnjjKDki5FHlKQ8839TGHvj8y&si=Xj0WjBTR7ubN5bKe)
Machine learning for condensed matter physics
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLYc-eBoIpXTKSVBB2nUH6ezrMbT727Cka&si=2DAEPezuGQiJL-ha)
Machine learning in genomics
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLypiXJdtIca6U5uQOCHjP9Op3gpa177fK&si=Ja7ODGeY9CSvGbqO)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLypiXJdtIca6dEYlNoZJwBaz__CdsaoKJ&si=VBk9sxa1o5JmkS8g)
Computational biology in python
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLWVKUEZ25V94kdT2Lh97KqB9MoLV9ZzmU&si=kNcH2xm-yIggR8jP)
Synthetic biology and machine learning
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLf4eUKhxEIuruU51wt1b1waMyAOzkah5B&si=voezZdZVGBpjAGLJ)
Bioinformatics python
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLsSUJubNtkrCESp-eEiWayFa3vQ2VN3kK&si=bwjDqM6TpabbPn67)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLtqF5YXg7GLlQJUv9XJ3RWdd5VYGwBHrP&si=MAQz7MyrT05UfcRk)
Machine learning in biology
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLwU4WqkjjeXhHnNkoHuq-jQ3AgC3uhyhB&si=i0STqFddgK-NC4EM)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLj4Zs4bjsI9rigDItS7PMMvxrFv3WA_2_&si=WE10h_haohcFjmZp)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLJOFHNbp70IU8NrBtmTUFQ_0B8d0eRK2U&si=KX6EeIxAU2EOsgZO)
Bioinformatics computational biology R
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLRbUOpXOpZ2qGJuwhSA2XLkpb60Ly2auZ&si=AyqJ8RyjXKkMFVmK)
Biotechnology
Neurotechnology
[https://www.youtube.com/watch?v=sNP4_3cbLxA](https://www.youtube.com/watch?v=sNP4_3cbLxA)
Machine learning for neuroscience
Synthetic biology
Algebraic topology
[https://youtu.be/XxFGokyYo6g?si=mSF6dBNVbXoFcW7q](https://youtu.be/XxFGokyYo6g?si=mSF6dBNVbXoFcW7q)
Biologically plausible alternatives to backpropagation
Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass
[[2201.11665] Error-driven Input Modulation: Solving the Credit Assignment Problem without a Backward Pass](https://arxiv.org/abs/2201.11665)
[https://youtu.be/4kC-xVOUGDw?feature=shared](https://youtu.be/4kC-xVOUGDw?feature=shared)
Symbolic Learning Enables Self-Evolving Agents [[2406.18532] Symbolic Learning Enables Self-Evolving Agents](https://arxiv.org/abs/2406.18532)
Liquid neural networks
[https://youtu.be/HGLjOxQxcr0?si=wf8EUNgLOa55BiTT](https://youtu.be/HGLjOxQxcr0?si=wf8EUNgLOa55BiTT)
World models
https://x.com/micheli_vincent/status/1806697975713866005?t=hfAZ9OAiQI-PmIhMj7RsmQ&s=19
[[2406.19320] Efficient World Models with Context-Aware Tokenization](https://arxiv.org/abs/2406.19320)
The age of neurosymbolics is emerging
[[2406.13892] Adaptable Logical Control for Large Language Models](https://arxiv.org/abs/2406.13892)
https://x.com/HonghuaZhang2/status/1806727439823102325?t=B5ovBjcpq-AAGYO95ZrLow&s=19
Short Circuiting: the first alignment technique that is adversarially robust https://x.com/andyzou_jiaming/status/1799232319250743561
[https://www.promptingguide.ai/](https://www.promptingguide.ai/)
biologically palusible neurons as controllers
[New Computational Model of Real Neurons Could Lead to Better AI](https://www.simonsfoundation.org/2024/06/24/new-computational-model-of-real-neurons-could-lead-to-better-ai/)
https://www.pnas.org/doi/10.1073/pnas.2311893121
Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network
[[2406.15109] Brain-Like Language Processing via a Shallow Untrained Multihead Attention Network](https://arxiv.org/abs/2406.15109)
JEPA
Constitutional AI
RLHF from scratch
[https://youtu.be/3uvnoVjM8nY?si=LiegzdgfTaHKLGc2](https://youtu.be/3uvnoVjM8nY?si=LiegzdgfTaHKLGc2)
[https://youtu.be/CCTRyTAL72U?si=TKAEkGbUhwFxbiXq](https://youtu.be/CCTRyTAL72U?si=TKAEkGbUhwFxbiXq)
Explainable AI
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLV8yxwGOxvvovp-j6ztxhF3QcKXT6vORU&si=6Gyz5YA-sX_DEsdo)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLqDyyww9y-1SwNZ-6CmvfXDAOdLS7yUQ4&si=D2FIyST7FAynHN_K)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLj0wREcwABG40vlGIObmaj0B3TrJDl0iz&si=H2RKqwSs7MdigxOl)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PL8_xPU5epJddcWuqIjPYBTHjKhAfnMdXN&si=prVWT8hILqkxs6oB)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLjvuMgo5HcNlsuARzur_t4Fw-6bJPE_no&si=_NvHs32nv1Ld4gsU)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PL2SWJyNGIwtSIR5BxyJWstnYcorspJL1Q&si=E-dDhH6YHlW_WUvw)
Interpretable AI
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLWjm4hHpaNg6c-W7JjNYDEC_kJK9oSp0Y&si=bx6G8XQIbZproCvC)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLGViarxWrOJcIMxkMf0ALKICPzEKppkBE&si=kMEjAqkxwJLrOSnI)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLood5-0migxMD1jUeo10ezi0_j--fKTbm&si=Ib2-lZRHYdY5-u8U)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLuD_SqLtxSdXVSrXneEPkZtzTTQMT4hQ8&si=Zwbmv4qHcewfh8Iy)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLzERW_Obpmv-Jiqz1ODjdIokRJCc0eC-2&si=-RHNr8Seq2k8bnjF)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLdIuiWj7b66H_ajC97M390imZP87Ik7ZW&si=8lsQyFP7oBUKuwF0)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLFze15KrfxbE5jd5L4prQXwkUcSdwRboo&si=nynrfDknamuA6jF7)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLFVVASQZhO15JlwdBwSzrGC1Y_Qmbbj_K&si=yPp5L4IJsL94Ow0P)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLM5RAudXfaul-86LiRaeTCEr_w6AymEad&si=4HfoYvIH7yG4rF49)
Explainable AI for sciences
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLHyI3Fbmv0Sc0G5FXvUonb4j-fNNGDEPQ&si=HXZ5iPtAtQMEAedr)
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PLgKuh-lKre107ZnrJ3S0_DWoB3CHgJQpJ&si=UVzjXVN8_yUrSou-)
Mixture of experts from scratch
Neurosymbolic AI survey
[[2305.08876] Neurosymbolic AI and its Taxonomy: a survey](https://arxiv.org/abs/2305.08876)
[GitHub - nocotan/awesome-information-geometry: About A collection of AWESOME things about information geometry Topics](https://github.com/nocotan/awesome-information-geometry)
Liquid neural networks
Spiking neural networks
Representations and generalization in artificial and brain neural networks
https://www.pnas.org/doi/10.1073/pnas.2311805121
Reservoir computing
Anil seth consciousness and AI models
[OSF](https://osf.io/preprints/psyarxiv/tz6an)
https://x.com/anilkseth/status/1807356419362189498?t=cJP5INhKcZWxTOTxJGHd7g&s=19
Consciousness theories landscape
https://www.sciencedirect.com/science/article/pii/S0079610723001128
Differential geometry
[Než budete pokračovat na YouTube](https://youtube.com/playlist?list=PL9_jI1bdZmz0hIrNCMQW1YmZysAiIYSSS&si=zMHgGnLU1gkaWgR-)
Geometric deep learning
[https://youtu.be/hROSXAY2JBc?si=xE2OEC9l_1qBtEcy](https://youtu.be/hROSXAY2JBc?si=xE2OEC9l_1qBtEcy)
Machine learning meets program synthesis
[https://youtu.be/vmBfyjF38ls?si=liVLtzksmJH9c1md](https://youtu.be/vmBfyjF38ls?si=liVLtzksmJH9c1md)
Interpretable deep learning
[https://youtu.be/Hvla3sgSXIc?si=INCkMDvl4CHTbElr](https://youtu.be/Hvla3sgSXIc?si=INCkMDvl4CHTbElr)
Alternatives to Transformers
[Reddit - The heart of the internet](https://www.reddit.com/r/MachineLearning/s/iN04FvgMDs)
[Reddit - The heart of the internet](https://www.reddit.com/r/MachineLearning/s/rKiDH1K0oD)
Optical neural networks
https://techxplore.com/news/2024-06-convolutional-optical-neural-networks-herald.html
Q* [[2406.14283] Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning](https://arxiv.org/abs/2406.14283)
Information theory
https://x.com/caglar_ee/status/1807641695074320764?t=5-zmh94tAwV7Syr_WCtvlQ&s=19
LoRA
3 hour animated math of electromagnetism
[https://youtu.be/Sj_GSBaUE1o?si=eWByh_tluTQkWXJF](https://youtu.be/Sj_GSBaUE1o?si=eWByh_tluTQkWXJF)
fun search
alphafold
[https://youtu.be/TqU-lCuSFUI?si=OjvV10AigfYxvsf9](https://youtu.be/TqU-lCuSFUI?si=OjvV10AigfYxvsf9)
Higher topos theory in physics
[https://youtu.be/Gr_BCr1rYVM?si=Yxju1g6buztcoqiE](https://youtu.be/Gr_BCr1rYVM?si=Yxju1g6buztcoqiE)
[Toward A Mathematical Framework for Computation in Superposition — LessWrong](https://www.lesswrong.com/posts/2roZtSr5TGmLjXMnT/toward-a-mathematical-framework-for-computation-in)
[https://www.youtube.com/results?search_query=thomas+metzinger](https://www.youtube.com/results?search_query=thomas+metzinger) philosopher all of experience is representations
Conscious artificial intelligence and biological naturalism [OSF](https://osf.io/preprints/psyarxiv/tz6an)
https://x.com/anilkseth/status/1807356419362189498
https://x.com/anilkseth/status/1807356444502847815
https://x.com/anilkseth/status/1807356461791744237
linear lagebra, numericl optimization, measure theory, convex optimization
[[2405.14806] Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics](https://arxiv.org/abs/2405.14806)
[GitHub - heidelberg-hepml/lorentz-gatr: Repository for <Lorentz-Equivariant Geometric Algebra Transformers for High-Energy Physics> (J. Spinner et al 2024)](https://github.com/heidelberg-hepml/lorentz-gatr?tab=readme-ov-file)
Free energy principle
Hopfield networks
Transformers in brain
[Shared functional specialization in transformer-based language models and the human brain | Nature Communications](https://www.nature.com/articles/s41467-024-49173-5)
https://x.com/sreejan_kumar/status/1807849677775106257?t=mbImCqEIIDejNRomyQmj7g&s=19
[Interpretable Machine Learning](https://christophm.github.io/interpretable-ml-book/)
[Supervised Machine Learning for Science](https://ml-science-book.com/) supervised machine learning for science
MLA+MOE
next token prediction + full sequence diffusion [Diffusion Forcing: Next-token Prediction Meets Full-Sequence Diffusion](https://boyuan.space/diffusion-forcing/)
machine learning books [https://franknielsen.github.io/Books/CuratedBookLists.html](https://franknielsen.github.io/Books/CuratedBookLists.html)
[Reddit - The heart of the internet](https://www.reddit.com/r/learnmachinelearning/comments/1dtovf5/how_good_is_this_book_nowadays/)
Bayesian deep learning
[A Comprehensive Introduction to Bayesian Deep Learning - Joris Baan](https://jorisbaan.nl/2021/03/02/introduction-to-bayesian-deep-learning.html)
Multimodal models
https://x.com/reach_vb/status/1808528557431210236?t=qK6qkGVwx1O_RJ8kY1u0gQ&s=19
Langlands program
[https://youtu.be/8RMqwNOQpOs?si=jNP16qFEwzqB0Jk7](https://youtu.be/8RMqwNOQpOs?si=jNP16qFEwzqB0Jk7)
https://x.com/DiracGhost/status/1809033919737565585?t=j2OXL_rMezbJ3Ofdj3JSAA&s=19
Artificial Intelligence Math Olympiad (AIMO) with LLMs solutions
[AIMO Prize](https://aimoprize.com/)
https://x.com/Thom_Wolf/status/1809895886899585164?t=57Zl4N1dg0MYFZbR2JDjyg&s=19
[An Extremely Opinionated Annotated List of My Favourite Mechanistic Interpretability Papers v2 — AI Alignment Forum](https://www.alignmentforum.org/posts/NfFST5Mio7BCAQHPA/an-extremely-opinionated-annotated-list-of-my-favourite-1)
Scalable oversight
[[2407.04622] On scalable oversight with weak LLMs judging strong LLMs](https://arxiv.org/abs/2407.04622)