Category Theory Map
1. Categories
1.1 Definition
1.2 Examples
1.2.1 Set
1.2.2 Grp
1.2.3 Ab
1.2.4 Top
1.2.5 Vect
1.2.6 Pos
1.2.7 Hask
1.3 Morphisms
1.3.1 Identity morphism
1.3.2 Composition of morphisms
1.3.3 Isomorphisms
1.3.4 Monomorphisms
1.3.5 Epimorphisms
1.3.6 Endomorphisms
1.3.7 Automorphisms
1.4 Initial and terminal objects
1.5 Zero objects
2. Functors
2.1 Definition
2.2 Examples
2.2.1 Identity functor
2.2.2 Constant functor
2.2.3 Forgetful functor
2.2.4 Free functor
2.2.5 Power set functor
2.2.6 Hom functor
2.3 Functor categories
2.4 Bifunctors
2.5 Contravariant functors
2.6 Representable functors
2.7 Adjoint functors
2.7.1 Left adjoint
2.7.2 Right adjoint
2.7.3 Adjunction
2.8 Equivalence of categories
2.9 Yoneda lemma
3. Natural Transformations
3.1 Definition
3.2 Examples
3.2.1 Identity natural transformation
3.2.2 Constant natural transformation
3.3 Horizontal composition
3.4 Vertical composition
3.5 Natural isomorphisms
4. Limits and Colimits
4.1 Limits
4.1.1 Definition
4.1.2 Examples
4.1.2.1 Products
4.1.2.2 Pullbacks
4.1.2.3 Equalizers
4.1.2.4 Inverse limits
4.2 Colimits
4.2.1 Definition
4.2.2 Examples
4.2.2.1 Coproducts
4.2.2.2 Pushouts
4.2.2.3 Coequalizers
4.2.2.4 Direct limits
4.3 Preservation of limits and colimits
5. Monoidal Categories
5.1 Definition
5.2 Examples
5.2.1 Cartesian monoidal categories
5.2.2 Cocartesian monoidal categories
5.2.3 Symmetric monoidal categories
5.2.4 Braided monoidal categories
5.3 Monoidal functors
5.4 Monoidal natural transformations
5.5 Coherence theorems
6. Enriched Categories
6.1 Definition
6.2 Examples
6.2.1 2-categories
6.2.2 Metric spaces
6.2.3 Simplicial sets
6.3 Enriched functors
6.4 Enriched natural transformations
7. Topos Theory
7.1 Definition
7.2 Examples
7.2.1 Set
7.2.2 Sheaves on a topological space
7.2.3 Etale topos
7.3 Subobject classifier
7.4 Power objects
7.5 Geometric morphisms
7.6 Classifying topoi
7.7 Grothendieck topoi
8. Abelian Categories
8.1 Definition
8.2 Examples
8.2.1 Ab
8.2.2 Mod_R (R-modules)
8.2.3 Sheaves of abelian groups
8.3 Kernels and cokernels
8.4 Images and coimages
8.5 Exact sequences
8.6 Projective and injective objects
8.7 Derived functors
8.7.1 Ext functors
8.7.2 Tor functors
8.8 Derived categories
8.9 Spectral sequences
9. Triangulated Categories
9.1 Definition
9.2 Examples
9.2.1 Derived categories
9.2.2 Stable homotopy categories
9.3 Triangles
9.4 Exact triangles
9.5 Octahedral axiom
9.6 Localization
10. Higher Category Theory
10.1 Strict n-categories
10.2 Weak n-categories
10.3 Infinity categories
10.4 Simplicial categories
10.5 Quasi-categories
10.6 Model categories
10.7 Homotopy hypothesis
11. Applications
11.1 Algebraic geometry
11.2 Algebraic topology
11.3 Homological algebra
11.4 Representation theory
11.5 Mathematical physics
11.6.1 Categorical quantum mechanics
11.6 Computer science
11.6.1 Type theory
11.6.2 Functional programming
11.6.3 Domain theory
11.7 Logic
11.7.1 Categorical logic
11.7.2 Topos theory as a foundation for mathematics
12. Monoidal Categories and Their Variants
12.1 Strict monoidal categories
12.2 Lax monoidal categories
12.3 Oplax monoidal categories
12.4 Braided monoidal categories
12.5 Symmetric monoidal categories
12.6 Ribbon categories
12.7 Tortile categories
12.8 Compact closed categories
12.9 Dagger categories
12.10 Frobenius algebras
12.11 Hopf algebras
12.12 Quantum groups
13. Fibrations and Opfibrations
13.1 Grothendieck fibrations
13.2 Grothendieck opfibrations
13.3 Cartesian morphisms
13.4 Opcartesian morphisms
13.5 Cleavages
13.6 Split fibrations
13.7 Split opfibrations
13.8 Fibrewise limits and colimits
13.9 Beck-Chevalley condition
13.10 Indexed categories
13.11 Slice categories
13.12 Comma categories
14. Profunctors and Distributors
14.1 Profunctors
14.2 Composition of profunctors
14.3 Distributors
14.4 Bimodules
14.5 Kan extensions
14.6 Weighted limits and colimits
14.7 Enriched profunctors
14.8 Monoidal profunctors
15. Sheaves and Stacks
15.1 Presheaves
15.2 Sheaves
15.3 Sites
15.4 Grothendieck topologies
15.5 Sheafification
15.6 Stacks
15.7 Gerbes
15.8 Descent theory
15.9 Grothendieck topoi
15.10 Classifying topoi
15.11 Topos-theoretic geometry
16. Operads and Multicategories
16.1 Operads
16.2 Symmetric operads
16.3 Cyclic operads
16.4 Modular operads
16.5 Multicategories
16.6 Symmetric multicategories
16.7 Generalized multicategories
16.8 Enriched operads
16.9 Homotopy theory of operads
16.10 Koszul duality for operads
17. 2-Categories and Bicategories
17.1 Strict 2-categories
17.2 Bicategories
17.3 Lax functors
17.4 Oplax functors
17.5 Pseudo functors
17.6 Natural transformations
17.7 Modifications
17.8 Adjunctions in 2-categories
17.9 Monads in 2-categories
17.10 Eilenberg-Moore construction
17.11 Kleisli construction
17.12 Monoidal bicategories
18. Double Categories and Equipments
18.1 Double categories
18.2 Vertical categories
18.3 Horizontal categories
18.4 Double functors
18.5 Double natural transformations
18.6 Equipments
18.7 Proarrow equipments
18.8 Framed bicategories
18.9 Double profunctors
19. Enriched Category Theory
19.1 V-categories
19.2 V-functors
19.3 V-natural transformations
19.4 V-limits and V-colimits
19.5 Weighted limits and colimits
19.6 V-monoidal categories
19.7 V-enriched adjunctions
19.8 V-enriched monads
19.9 V-enriched Kan extensions
19.10 V-enriched Yoneda lemma
19.11 V-enriched Day convolution
19.12 Change of base
20. Homotopical Algebra and Higher Structures
20.1 Model categories
20.2 Quillen adjunctions
20.3 Homotopy categories
20.4 Derived functors
20.5 Homotopy limits and colimits
20.6 Simplicial model categories
20.7 A_∞ categories
20.8 E_∞ categories
20.9 Differential graded categories
20.10 Stable infinity categories
20.11 Spectral categories
20.12 Factorization homology
21. Categorical Algebra
21.1 Monads
21.2 Algebras for a monad
21.3 Eilenberg-Moore category
21.4 Kleisli category
21.5 Comonads
21.6 Coalgebras for a comonad
21.7 Eilenberg-Moore category for comonads
21.8 Kleisli category for comonads
21.9 Bialgebras
21.10 Distributive laws
21.11 Lawvere theories
21.12 Monads in double categories
22. Categorical Logic and Type Theory
22.1 Cartesian closed categories
22.2 Lambda calculus
22.3 Simply typed lambda calculus
22.4 Dependent types
22.5 Intuitionistic type theory
22.6 Martin-Löf type theory
22.7 Homotopy type theory
22.8 Categorical semantics of type theories
22.9 Toposes as models of higher-order logic
22.10 Kripke-Joyal semantics
22.11 Sheaf semantics
22.12 Realizability toposes
23. Categorical Foundations
23.1 ETCS (Elementary Theory of the Category of Sets)
23.2 CCAF (Category of Categories as a Foundation)
23.3 Homotopy type theory as a foundation
23.4 Univalent foundations
23.5 Constructive set theory
23.6 Topos theory as a foundation
23.7 Categorical models of set theory
23.8 Grothendieck universes
23.9 Large categories
23.10 Accessible and locally presentable categories
23.11 Categorical logic as a foundation
23.12 Abstract Stone duality
24. Categorical Representation Theory
24.1 Tannakian categories
24.2 Rigid monoidal categories
24.3 Fusion categories
24.4 Modular tensor categories
24.5 Braided fusion categories
24.6 Pivotal categories
24.7 Spherical categories
24.8 Ribbon fusion categories
24.9 Module categories
24.10 Morita theory for tensor categories
24.11 Categorification of quantum groups
24.12 Categorical actions
25. Applied Category Theory
25.1 Categorical systems theory
25.2 Categorical control theory
25.3 Categorical databases
25.4 Categorical knowledge representation
25.5 Categorical linguistics
25.6 Categorical models of cognition
25.7 Categorical quantum mechanics
25.8 Categorical quantum information
25.9 Categorical network theory
25.10 Categorical game theory
25.11 Categorical economics
25.12 Categorical social choice theory