Category Theory Map
1. Categories
   1.1 Definition
   1.2 Examples
      1.2.1 Set
      1.2.2 Grp
      1.2.3 Ab
      1.2.4 Top
      1.2.5 Vect
      1.2.6 Pos
      1.2.7 Hask
   1.3 Morphisms
      1.3.1 Identity morphism
      1.3.2 Composition of morphisms
      1.3.3 Isomorphisms
      1.3.4 Monomorphisms
      1.3.5 Epimorphisms
      1.3.6 Endomorphisms
      1.3.7 Automorphisms
   1.4 Initial and terminal objects
   1.5 Zero objects
2. Functors
   2.1 Definition
   2.2 Examples
      2.2.1 Identity functor
      2.2.2 Constant functor
      2.2.3 Forgetful functor
      2.2.4 Free functor
      2.2.5 Power set functor
      2.2.6 Hom functor
   2.3 Functor categories
   2.4 Bifunctors
   2.5 Contravariant functors
   2.6 Representable functors
   2.7 Adjoint functors
      2.7.1 Left adjoint
      2.7.2 Right adjoint
      2.7.3 Adjunction
   2.8 Equivalence of categories
   2.9 Yoneda lemma
3. Natural Transformations
   3.1 Definition
   3.2 Examples
      3.2.1 Identity natural transformation
      3.2.2 Constant natural transformation
   3.3 Horizontal composition
   3.4 Vertical composition
   3.5 Natural isomorphisms
4. Limits and Colimits
   4.1 Limits
      4.1.1 Definition
      4.1.2 Examples
         4.1.2.1 Products
         4.1.2.2 Pullbacks
         4.1.2.3 Equalizers
         4.1.2.4 Inverse limits
   4.2 Colimits
      4.2.1 Definition
      4.2.2 Examples
         4.2.2.1 Coproducts
         4.2.2.2 Pushouts
         4.2.2.3 Coequalizers
         4.2.2.4 Direct limits
   4.3 Preservation of limits and colimits
5. Monoidal Categories
   5.1 Definition
   5.2 Examples
      5.2.1 Cartesian monoidal categories
      5.2.2 Cocartesian monoidal categories
      5.2.3 Symmetric monoidal categories
      5.2.4 Braided monoidal categories
   5.3 Monoidal functors
   5.4 Monoidal natural transformations
   5.5 Coherence theorems
6. Enriched Categories
   6.1 Definition
   6.2 Examples
      6.2.1 2-categories
      6.2.2 Metric spaces
      6.2.3 Simplicial sets
   6.3 Enriched functors
   6.4 Enriched natural transformations
7. Topos Theory
   7.1 Definition
   7.2 Examples
      7.2.1 Set
      7.2.2 Sheaves on a topological space
      7.2.3 Etale topos
   7.3 Subobject classifier
   7.4 Power objects
   7.5 Geometric morphisms
   7.6 Classifying topoi
   7.7 Grothendieck topoi
8. Abelian Categories
   8.1 Definition
   8.2 Examples
      8.2.1 Ab
      8.2.2 Mod_R (R-modules)
      8.2.3 Sheaves of abelian groups
   8.3 Kernels and cokernels
   8.4 Images and coimages
   8.5 Exact sequences
   8.6 Projective and injective objects
   8.7 Derived functors
      8.7.1 Ext functors
      8.7.2 Tor functors
   8.8 Derived categories
   8.9 Spectral sequences
9. Triangulated Categories
   9.1 Definition
   9.2 Examples
      9.2.1 Derived categories
      9.2.2 Stable homotopy categories
   9.3 Triangles
   9.4 Exact triangles
   9.5 Octahedral axiom
   9.6 Localization
10. Higher Category Theory
    10.1 Strict n-categories
    10.2 Weak n-categories
    10.3 Infinity categories
    10.4 Simplicial categories
    10.5 Quasi-categories
    10.6 Model categories
    10.7 Homotopy hypothesis
11. Applications
    11.1 Algebraic geometry
    11.2 Algebraic topology
    11.3 Homological algebra
    11.4 Representation theory
    11.5 Mathematical physics
       11.6.1 Categorical quantum mechanics
    11.6 Computer science
       11.6.1 Type theory
       11.6.2 Functional programming
       11.6.3 Domain theory
    11.7 Logic
       11.7.1 Categorical logic
       11.7.2 Topos theory as a foundation for mathematics
12. Monoidal Categories and Their Variants
    12.1 Strict monoidal categories
    12.2 Lax monoidal categories
    12.3 Oplax monoidal categories
    12.4 Braided monoidal categories
    12.5 Symmetric monoidal categories
    12.6 Ribbon categories
    12.7 Tortile categories
    12.8 Compact closed categories
    12.9 Dagger categories
    12.10 Frobenius algebras
    12.11 Hopf algebras
    12.12 Quantum groups
13. Fibrations and Opfibrations
    13.1 Grothendieck fibrations
    13.2 Grothendieck opfibrations
    13.3 Cartesian morphisms
    13.4 Opcartesian morphisms
    13.5 Cleavages
    13.6 Split fibrations
    13.7 Split opfibrations
    13.8 Fibrewise limits and colimits
    13.9 Beck-Chevalley condition
    13.10 Indexed categories
    13.11 Slice categories
    13.12 Comma categories
14. Profunctors and Distributors
    14.1 Profunctors
    14.2 Composition of profunctors
    14.3 Distributors
    14.4 Bimodules
    14.5 Kan extensions
    14.6 Weighted limits and colimits
    14.7 Enriched profunctors
    14.8 Monoidal profunctors
15. Sheaves and Stacks
    15.1 Presheaves
    15.2 Sheaves
    15.3 Sites
    15.4 Grothendieck topologies
    15.5 Sheafification
    15.6 Stacks
    15.7 Gerbes
    15.8 Descent theory
    15.9 Grothendieck topoi
    15.10 Classifying topoi
    15.11 Topos-theoretic geometry
16. Operads and Multicategories
    16.1 Operads
    16.2 Symmetric operads
    16.3 Cyclic operads
    16.4 Modular operads
    16.5 Multicategories
    16.6 Symmetric multicategories
    16.7 Generalized multicategories
    16.8 Enriched operads
    16.9 Homotopy theory of operads
    16.10 Koszul duality for operads
17. 2-Categories and Bicategories
    17.1 Strict 2-categories
    17.2 Bicategories
    17.3 Lax functors
    17.4 Oplax functors
    17.5 Pseudo functors
    17.6 Natural transformations
    17.7 Modifications
    17.8 Adjunctions in 2-categories
    17.9 Monads in 2-categories
    17.10 Eilenberg-Moore construction
    17.11 Kleisli construction
    17.12 Monoidal bicategories
18. Double Categories and Equipments
    18.1 Double categories
    18.2 Vertical categories
    18.3 Horizontal categories
    18.4 Double functors
    18.5 Double natural transformations
    18.6 Equipments
    18.7 Proarrow equipments
    18.8 Framed bicategories
    18.9 Double profunctors
19. Enriched Category Theory
    19.1 V-categories
    19.2 V-functors
    19.3 V-natural transformations
    19.4 V-limits and V-colimits
    19.5 Weighted limits and colimits
    19.6 V-monoidal categories
    19.7 V-enriched adjunctions
    19.8 V-enriched monads
    19.9 V-enriched Kan extensions
    19.10 V-enriched Yoneda lemma
    19.11 V-enriched Day convolution
    19.12 Change of base
20. Homotopical Algebra and Higher Structures
    20.1 Model categories
    20.2 Quillen adjunctions
    20.3 Homotopy categories
    20.4 Derived functors
    20.5 Homotopy limits and colimits
    20.6 Simplicial model categories
    20.7 A_∞ categories
    20.8 E_∞ categories
    20.9 Differential graded categories
    20.10 Stable infinity categories
    20.11 Spectral categories
    20.12 Factorization homology
21. Categorical Algebra
    21.1 Monads
    21.2 Algebras for a monad
    21.3 Eilenberg-Moore category
    21.4 Kleisli category
    21.5 Comonads
    21.6 Coalgebras for a comonad
    21.7 Eilenberg-Moore category for comonads
    21.8 Kleisli category for comonads
    21.9 Bialgebras
    21.10 Distributive laws
    21.11 Lawvere theories
    21.12 Monads in double categories
22. Categorical Logic and Type Theory
    22.1 Cartesian closed categories
    22.2 Lambda calculus
    22.3 Simply typed lambda calculus
    22.4 Dependent types
    22.5 Intuitionistic type theory
    22.6 Martin-Löf type theory
    22.7 Homotopy type theory
    22.8 Categorical semantics of type theories
    22.9 Toposes as models of higher-order logic
    22.10 Kripke-Joyal semantics
    22.11 Sheaf semantics
    22.12 Realizability toposes
23. Categorical Foundations
    23.1 ETCS (Elementary Theory of the Category of Sets)
    23.2 CCAF (Category of Categories as a Foundation)
    23.3 Homotopy type theory as a foundation
    23.4 Univalent foundations
    23.5 Constructive set theory
    23.6 Topos theory as a foundation
    23.7 Categorical models of set theory
    23.8 Grothendieck universes
    23.9 Large categories
    23.10 Accessible and locally presentable categories
    23.11 Categorical logic as a foundation
    23.12 Abstract Stone duality
24. Categorical Representation Theory
    24.1 Tannakian categories
    24.2 Rigid monoidal categories
    24.3 Fusion categories
    24.4 Modular tensor categories
    24.5 Braided fusion categories
    24.6 Pivotal categories
    24.7 Spherical categories
    24.8 Ribbon fusion categories
    24.9 Module categories
    24.10 Morita theory for tensor categories
    24.11 Categorification of quantum groups
    24.12 Categorical actions
25. Applied Category Theory
    25.1 Categorical systems theory
    25.2 Categorical control theory
    25.3 Categorical databases
    25.4 Categorical knowledge representation
    25.5 Categorical linguistics
    25.6 Categorical models of cognition
    25.7 Categorical quantum mechanics
    25.8 Categorical quantum information
    25.9 Categorical network theory
    25.10 Categorical game theory
    25.11 Categorical economics
    25.12 Categorical social choice theory