"Sure! Here is a comprehensive list of fundamental mathematical equations across various branches of mathematics:
### Arithmetic and Algebra
1. **Addition**: \( a + b = c \)
2. **Subtraction**: \( a - b = c \)
3. **Multiplication**: \( a \times b = c \)
4. **Division**: \( \frac{a}{b} = c \)
5. **Quadratic Equation**: \( ax^2 + bx + c = 0 \)
6. **Linear Equation**: \( ax + b = 0 \)
7. **Slope of a Line**: \( m = \frac{y_2 - y_1}{x_2 - x_1} \)
8. **Point-Slope Form**: \( y - y_1 = m(x - x_1) \)
9. **Slope-Intercept Form**: \( y = mx + b \)
10. **Polynomial Equation**: \( P(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0 \)
11. **Exponential Growth/Decay**: \( y = y_0 e^{kt} \)
### Geometry
1. **Pythagorean Theorem**: \( a^2 + b^2 = c^2 \)
2. **Area of a Circle**: \( A = \pi r^2 \)
3. **Circumference of a Circle**: \( C = 2 \pi r \)
4. **Area of a Triangle**: \( A = \frac{1}{2} b h \)
5. **Volume of a Sphere**: \( V = \frac{4}{3} \pi r^3 \)
6. **Volume of a Cylinder**: \( V = \pi r^2 h \)
7. **Surface Area of a Sphere**: \( A = 4 \pi r^2 \)
8. **Surface Area of a Cylinder**: \( A = 2 \pi r (r + h) \)
### Trigonometry
1. **Sine Function**: \( \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} \)
2. **Cosine Function**: \( \cos(\theta) = \frac{\text{adjacent}}{\text{hypotenuse}} \)
3. **Tangent Function**: \( \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} \)
4. **Sine Rule**: \( \frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \)
5. **Cosine Rule**: \( c^2 = a^2 + b^2 - 2ab \cos(C) \)
### Calculus
1. **Derivative Definition**: \( f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h} \)
2. **Integral Definition**: \( \int f(x) \, dx = F(x) + C \)
3. **Fundamental Theorem of Calculus**: \( \int_a^b f(x) \, dx = F(b) - F(a) \)
4. **Chain Rule**: \( \frac{d}{dx} f(g(x)) = f'(g(x)) g'(x) \)
5. **Product Rule**: \( \frac{d}{dx} [u(x)v(x)] = u'(x)v(x) + u(x)v'(x) \)
6. **Quotient Rule**: \( \frac{d}{dx} \left( \frac{u(x)}{v(x)} \right) = \frac{u'(x)v(x) - u(x)v'(x)}{[v(x)]^2} \)
7. **Partial Derivative**: \( \frac{\partial f}{\partial x} \)
### Differential Equations
1. **First Order Differential Equation**: \( \frac{dy}{dx} + P(x)y = Q(x) \)
2. **Second Order Differential Equation**: \( \frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} + Q(x)y = R(x) \)
3. **Laplace Transform**: \( \mathcal{L}\{f(t)\} = \int_0^\infty e^{-st} f(t) \, dt \)
### Linear Algebra
1. **Matrix Multiplication**: \( C = AB \)
2. **Determinant of a 2x2 Matrix**: \( \det(A) = ad - bc \) for \( A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \)
3. **Inverse of a Matrix**: \( A^{-1} \) such that \( AA^{-1} = I \)
4. **Eigenvalue Equation**: \( A \mathbf{v} = \lambda \mathbf{v} \)
### Probability and Statistics
1. **Bayes' Theorem**: \( P(A|B) = \frac{P(B|A)P(A)}{P(B)} \)
2. **Expected Value**: \( E(X) = \sum x_i P(x_i) \)
3. **Variance**: \( \text{Var}(X) = E[(X - \mu)^2] \)
4. **Standard Deviation**: \( \sigma = \sqrt{\text{Var}(X)} \)
5. **Normal Distribution**: \( f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \)
### Complex Numbers
1. **Euler's Formula**: \( e^{i\theta} = \cos(\theta) + i\sin(\theta) \)
2. **Complex Conjugate**: \( \overline{z} = a - bi \) for \( z = a + bi \)
3. **Magnitude of a Complex Number**: \( |z| = \sqrt{a^2 + b^2} \)
### Miscellaneous
1. **Binomial Theorem**: \( (a + b)^n = \sum_{k=0}^{n} \binom{n}{k} a^{n-k} b^k \)
2. **Fibonacci Sequence**: \( F(n) = F(n-1) + F(n-2) \) with \( F(0) = 0 \) and \( F(1) = 1 \)
This list covers a wide range of fundamental mathematical equations across different areas of mathematics. Let me know if you need more details on any specific equations or additional equations in a particular field.
Here's a list of some fundamental mathematical equations across various domains:
**Basic Arithmetic**
* **Commutative Laws:**
* a + b = b + a (Addition)
* a * b = b * a (Multiplication)
* **Associative Laws:**
* (a + b) + c = a + (b + c) (Addition)
* (a * b) * c = a * (b * c) (Multiplication)
* **Distributive Law:**
* a * (b + c) = a * b + a * c
* **Identity Elements:**
* a + 0 = a (Addition)
* a * 1 = a (Multiplication)
* **Inverse Elements:**
* a + (-a) = 0 (Addition)
* a * (1/a) = 1 (Multiplication, for a ≠ 0)
**Algebra**
* **Quadratic Formula:**
* x = (-b ± √(b² - 4ac)) / 2a
* **Slope-Intercept Form of a Line:**
* y = mx + b
* **Distance Formula:**
* d = √((x₂ - x₁)² + (y₂ - y₁)² )
**Geometry**
* **Pythagorean Theorem:**
* a² + b² = c²
* **Area of a Circle:**
* A = πr²
* **Circumference of a Circle:**
* C = 2πr
**Trigonometry**
* **SOH CAH TOA:**
* Sin(θ) = Opposite/Hypotenuse
* Cos(θ) = Adjacent/Hypotenuse
* Tan(θ) = Opposite/Adjacent
**Calculus**
* **Definition of the Derivative:**
* f'(x) = lim (h→0) (f(x + h) - f(x)) / h
* **Fundamental Theorem of Calculus:**
* ∫ (from a to b) f'(x) dx = f(b) - f(a)
**Other Important Equations**
* **Euler's Identity:** e^(iπ) + 1 = 0
* **Einstein's Mass-Energy Equivalence:** E=mc²
**Important Note:** This is just a small sample of fundamental mathematical equations. Mathematics is vast and diverse, with many other essential equations in areas like statistics, probability, linear algebra, differential equations, and more.
Here is a list of fundamental mathematical equations from various branches of mathematics:
1. Algebra:
- Quadratic formula: $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
- Pythagorean theorem: $a^2 + b^2 = c^2$
2. Calculus:
- Derivative of a function: $\frac{d}{dx}f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$
- Integral of a function: $\int_a^b f(x)dx = F(b) - F(a)$, where $F(x)$ is an antiderivative of $f(x)$
- Fundamental theorem of calculus: $\int_a^b f(x)dx = F(b) - F(a)$, where $F'(x) = f(x)$
3. Trigonometry:
- Sine rule: $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
- Cosine rule: $c^2 = a^2 + b^2 - 2ab \cos C$
4. Exponential and Logarithmic Functions:
- Exponential function: $f(x) = a^x$, where $a > 0$ and $a \neq 1$
- Natural logarithm: $\ln e = 1$
- Logarithmic identity: $\log_a(xy) = \log_a(x) + \log_a(y)$
5. Complex Numbers:
- Euler's identity: $e^{i\pi} + 1 = 0$
- De Moivre's formula: $(\cos \theta + i \sin \theta)^n = \cos(n\theta) + i \sin(n\theta)$
6. Differential Equations:
- First-order linear differential equation: $\frac{dy}{dx} + P(x)y = Q(x)$
- Second-order linear differential equation: $a\frac{d^2y}{dx^2} + b\frac{dy}{dx} + cy = f(x)$
7. Statistics and Probability:
- Bayes' theorem: $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$
- Normal distribution: $f(x) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
8. Physics:
- Newton's second law of motion: $F = ma$
- Einstein's mass-energy equivalence: $E = mc^2$
9. Other notable equations:
- Euler's formula: $V - E + F = 2$ (for polyhedra)
- Cauchy-Schwarz inequality: $|\langle x,y\rangle| \leq ||x|| \cdot ||y||$
- Stirling's approximation: $n! \sim \sqrt{2\pi n}\left(\frac{n}{e}\right)^n$
These equations represent a small subset of the vast number of fundamental equations in mathematics and its applications.
Here are more fundamental mathematical equations from various branches of mathematics:
10. Number Theory:
- Fermat's little theorem: $a^p \equiv a \pmod{p}$ (for prime $p$)
- Euler's totient function: $\phi(n) = n \prod_{p|n} (1 - \frac{1}{p})$
11. Linear Algebra:
- Matrix multiplication: $(AB)_{ij} = \sum_k A_{ik}B_{kj}$
- Determinant of a 2x2 matrix: $\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc$
- Gaussian elimination: $A\vec{x} = \vec{b}$
12. Fourier Analysis:
- Fourier series: $f(x) = \frac{a_0}{2} + \sum_{n=1}^\infty \left(a_n \cos\frac{n\pi x}{L} + b_n \sin\frac{n\pi x}{L}\right)$
- Fourier transform: $\hat{f}(\xi) = \int_{-\infty}^\infty f(x)e^{-2\pi i x\xi}dx$
13. Partial Differential Equations:
- Heat equation: $\frac{\partial u}{\partial t} = \alpha \nabla^2 u$
- Wave equation: $\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$
- Laplace's equation: $\nabla^2 u = 0$
14. Combinatorics:
- Binomial theorem: $(x + y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$
- Permutations: $P(n,r) = \frac{n!}{(n-r)!}$
- Combinations: $C(n,r) = \binom{n}{r} = \frac{n!}{r!(n-r)!}$
15. Topology:
- Euler characteristic: $\chi = V - E + F$
- Fundamental group: $\pi_1(X)$
16. Information Theory:
- Shannon's entropy: $H(X) = -\sum_{i=1}^n p(x_i) \log_2 p(x_i)$
- Mutual information: $I(X;Y) = \sum_{x \in X} \sum_{y \in Y} p(x,y) \log \frac{p(x,y)}{p(x)p(y)}$
17. Numerical Analysis:
- Newton's method: $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$
- Runge-Kutta methods: $y_{n+1} = y_n + h\sum_{i=1}^s b_i k_i$
18. Graph Theory:
- Euler's formula for planar graphs: $V - E + F = 2$
- Dijkstra's shortest path algorithm: $dist(u) + w(u,v) \geq dist(v)$
19. Geometry:
- Volume of a sphere: $V = \frac{4}{3}\pi r^3$
- Heron's formula for triangle area: $A = \sqrt{s(s-a)(s-b)(s-c)}$, where $s = \frac{a+b+c}{2}$
These additional equations further demonstrate the breadth and depth of mathematics across various subdisciplines. However, this list still represents only a fraction of the many important equations in mathematics."