## Tags
- Part of:
- Related:
- Includes:
- Additional:
## Definitions
- [[Artificial Intelligence]] x [[Generalization]]
## Main resources
-
<iframe src="https://en.wikipedia.org/wiki/" allow="fullscreen" allowfullscreen="" style="height:100%;width:100%; aspect-ratio: 16 / 5; "></iframe>
## Landscapes written by AI (may include factually incorrect information)
Generalization in Artificial Intelligence
├── Definition
│ ├── Ability of AI models to perform well on unseen data
│ ├── Crucial for real-world applications
│ └── Generalization Gap
│ ├── Difference between training and test performance
│ └── Indicates model's ability to generalize
├── Challenges
│ ├── Dataset Shift
│ │ ├── Covariate Shift
│ │ │ ├── Change in input distribution
│ │ │ └── P(X) changes, P(Y|X) remains the same
│ │ ├── Prior Probability Shift
│ │ │ ├── Change in output distribution
│ │ │ └── P(Y) changes, P(X|Y) remains the same
│ │ └── Concept Shift
│ │ ├── Change in relationship between input and output
│ │ └── P(Y|X) changes
│ ├── Overfitting
│ │ ├── Memorization of training data
│ │ ├── Poor performance on new data
│ │ ├── High variance, low bias
│ │ └── Causes
│ │ ├── Complex models
│ │ ├── Insufficient regularization
│ │ └── Limited training data
│ └── Underfitting
│ ├── Oversimplified model
│ ├── High bias, low variance
│ └── Causes
│ ├── Overly simple models
│ ├── Insufficient training
│ └── Inadequate model capacity
├── Techniques for Improving Generalization
│ ├── Regularization
│ │ ├── L1 (Lasso) Regularization
│ │ │ ├── Adds L1 penalty to loss function
│ │ │ └── Encourages sparse weights
│ │ ├── L2 (Ridge) Regularization
│ │ │ ├── Adds L2 penalty to loss function
│ │ │ └── Encourages small weights
│ │ └── Dropout
│ │ ├── Randomly drops units during training
│ │ └── Prevents co-adaptation of features
│ ├── Cross-Validation
│ │ ├── K-Fold Cross-Validation
│ │ │ ├── Divides data into K folds
│ │ │ └── Trains and validates on different folds
│ │ ├── Leave-One-Out Cross-Validation
│ │ │ ├── Uses single example as validation set
│ │ │ └── Repeated for each example
│ │ └── Stratified K-Fold Cross-Validation
│ │ ├── Preserves class distribution in each fold
│ │ └── Useful for imbalanced datasets
│ ├── Data Augmentation
│ │ ├── Image Transformations
│ │ │ ├── Rotation
│ │ │ ├── Flipping
│ │ │ ├── Cropping
│ │ │ ├── Color jittering
│ │ │ └── Elastic deformations
│ │ ├── Text Augmentation
│ │ │ ├── Synonym replacement
│ │ │ ├── Random insertion, swap, deletion
│ │ │ └── Back-translation
│ │ └── Audio Augmentation
│ │ ├── Noise addition
│ │ ├── Pitch shifting
│ │ ├── Time stretching
│ │ └── Reverberation
│ ├── Transfer Learning
│ │ ├── Pre-trained Models
│ │ │ ├── Leverage knowledge from large datasets
│ │ │ └── Examples: ResNet, BERT, GPT
│ │ ├── Fine-tuning
│ │ │ ├── Adapt pre-trained models to new tasks
│ │ │ └── Requires less data and training time
│ │ └── [[Domain Adaptation]]
│ │ ├── Transfer knowledge across domains
│ │ ├── Unsupervised Domain Adaptation
│ │ └── Adversarial Domain Adaptation
│ ├── Ensemble Methods
│ │ ├── Bagging
│ │ │ ├── Bootstrap Aggregating
│ │ │ └── Trains models on subsets of data
│ │ ├── Boosting
│ │ │ ├── AdaBoost
│ │ │ ├── Gradient Boosting
│ │ │ └── XGBoost
│ │ └── Stacking
│ │ ├── Combines multiple models
│ │ └── Uses meta-model to learn combination
│ └── Attention Mechanisms
│ ├── Self-Attention
│ │ ├── Relates different positions of a sequence
│ │ └── Basis for Transformers
│ ├── Multi-Head Attention
│ │ ├── Parallel self-attention layers
│ │ └── Captures different relationships
│ └── Transformer Architecture
│ ├── Encoder-Decoder structure
│ ├── Attention is all you need
│ └── Examples: BERT, GPT, T5
├── Evaluation Metrics
│ ├── Held-Out Test Set
│ │ ├── Measures performance on unseen data
│ │ └── Prevents information leakage from training
│ ├── [[Cross-Validation]] Scores
│ │ ├── Average performance across folds
│ │ └── More robust estimate of generalization
│ └── Domain-Specific Metrics
│ ├── F1 score, BLEU, ROUGE for NLP
│ ├── mAP, IoU for object detection
│ └── WER, CER for speech recognition
├── Generalization in Different AI Domains
│ ├── Computer Vision
│ │ ├── Object Detection
│ │ │ ├── Localize and classify objects
│ │ │ └── Challenges: scale, occlusion, viewpoint
│ │ ├── Image Segmentation
│ │ │ ├── Pixel-level classification
│ │ │ └── Challenges: complex scenes, object boundaries
│ │ └── Facial Recognition
│ │ ├── Identify individuals from images
│ │ └── Challenges: pose, illumination, expression
│ ├── Natural Language Processing
│ │ ├── Text Classification
│ │ │ ├── Assign categories to text
│ │ │ └── Challenges: ambiguity, sarcasm, context
│ │ ├── Named Entity Recognition
│ │ │ ├── Identify and classify named entities
│ │ │ └── Challenges: entity boundary, nested entities
│ │ └── Machine Translation
│ │ ├── Translate text across languages
│ │ └── Challenges: ambiguity, idioms, cultural differences
│ ├── Speech Recognition
│ │ ├── Acoustic Modeling
│ │ │ ├── Map acoustic features to phonemes
│ │ │ └── Challenges: noise, accents, speaker variability
│ │ ├── Language Modeling
│ │ │ ├── Predict next word in a sequence
│ │ │ └── Challenges: long-range dependencies, rare words
│ │ └── Speaker Adaptation
│ │ ├── Adapt models to specific speakers
│ │ └── Challenges: limited speaker data, accent variations
│ └── Reinforcement Learning
│ ├── Sim-to-Real Transfer
│ │ ├── Transfer policies from simulation to real world
│ │ └── Challenges: domain gap, physical constraints
│ ├── Domain Randomization
│ │ ├── Randomize simulation parameters
│ │ └── Improve robustness to domain variations
│ └── [[Meta-learning]]
│ ├── Learn to learn from multiple tasks
│ └── Adapt quickly to new tasks
└── Future Directions
├── [[Causal Inference]] for Generalization
│ ├── Learn causal relationships
│ └── Improve robustness to distribution shifts
├── Invariant Risk Minimization
│ ├── Learn invariant predictors across environments
│ └── Generalize to unseen environments
├── [[Out-of-Distribution Generalization]]
│ ├── Perform well on data outside training distribution
│ └── Detect and handle distribution shifts
├── [[Continual Learning]]
│ ├── Learn continuously from new data
│ └── Avoid catastrophic forgetting
├── [[Few-Shot Learning]]
│ ├── Learn from limited examples
│ └── Leverage prior knowledge and meta-learning
├── Unsupervised and Self-Supervised Learning
│ ├── Learn from unlabeled data
│ └── Improve generalization through pre-training
└── Explainable and Interpretable AI [[Explainable artificial intelligence]]
├── Understand and explain model decisions
└── Enhance trust and accountability in AI systems