#### Map 1
# Comprehensive Map of Physics
Physics is a vast field that seeks to understand the fundamental principles governing the universe. Below is an extensive map outlining the major branches and sub-disciplines of physics.
---
### A. Mechanics
- **1. Newtonian Mechanics**
- *a. Kinematics*
- Motion in One Dimension
- Motion in Two and Three Dimensions
- *b. Dynamics*
- Newton's Laws of Motion
- Applications (Projectile Motion, Circular Motion)
- *c. Work, Energy, and Power*
- Work-Energy Theorem
- Conservation of Energy
- Power Calculations
- *d. Momentum*
- Linear Momentum and Impulse
- Conservation of Momentum
- Collisions (Elastic and Inelastic)
- *e. Rotational Motion*
- Angular Kinematics
- Torque and Rotational Dynamics
- Angular Momentum Conservation
- *f. Gravitation*
- Newton's Law of Universal Gravitation
- Planetary Motion and Orbits
- Gravitational Fields and Potential
- **2. Fluid Mechanics**
- *a. Fluid Statics*
- Pressure and Density
- Buoyant Forces and Archimedes' Principle
- *b. Fluid Dynamics*
- Continuity Equation
- Bernoulli's Equation
- Viscosity and Laminar Flow
- Turbulence and Reynolds Number
- **3. Oscillations and Waves**
- *a. Simple Harmonic Motion*
- Mass-Spring Systems
- Pendulums
- *b. Damped and Driven Oscillations*
- *c. Wave Motion*
- Wave Properties (Amplitude, Wavelength, Frequency)
- Sound Waves and Acoustics
- Standing Waves and Resonance
### B. Thermodynamics
- **1. Temperature and Heat**
- Thermal Expansion
- Heat Transfer Methods (Conduction, Convection, Radiation)
- **2. Laws of Thermodynamics**
- Zeroth Law (Thermal Equilibrium)
- First Law (Conservation of Energy)
- Second Law (Entropy and Irreversibility)
- Third Law (Absolute Zero)
- **3. Thermodynamic Processes**
- Isothermal, Adiabatic, Isobaric, Isochoric Processes
- Heat Engines and Efficiency
- **4. Statistical Mechanics**
- Microstates and Macrostates
- Boltzmann Distribution
- Partition Functions
### C. Electromagnetism
- **1. Electrostatics**
- Electric Charge and Coulomb's Law
- Electric Field and Electric Potential
- Capacitance and Dielectrics
- **2. Electric Circuits**
- Current, Voltage, and Resistance
- Ohm's Law and Kirchhoff's Laws
- DC and AC Circuits
- Circuit Components (Resistors, Capacitors, Inductors)
- **3. Magnetism**
- Magnetic Fields and Forces
- Biot-Savart Law and Ampère's Law
- Electromagnetic Induction (Faraday's Law)
- **4. Maxwell's Equations**
- Gauss's Laws for Electricity and Magnetism
- Faraday's Law of Induction
- Ampère's Law with Maxwell's Addition
- **5. Electromagnetic Waves**
- Wave Equation Solutions
- Spectrum of Electromagnetic Radiation
- Polarization and Modulation
### D. Optics
- **1. Geometrical Optics**
- Reflection and Refraction (Snell's Law)
- Optical Instruments (Lenses, Mirrors, Prisms)
- Ray Tracing Techniques
- **2. Physical Optics**
- Interference (Young's Double-Slit Experiment)
- Diffraction (Single-Slit, Diffraction Gratings)
- Polarization of Light
- **3. Optical Phenomena**
- Dispersion and Spectra
- Holography
- Fiber Optics
---
### A. Relativity
- **1. Special Relativity**
- Postulates of Relativity
- Time Dilation and Length Contraction
- Relativistic Energy and Momentum
- Mass-Energy Equivalence (E=mc²)
- **2. General Relativity**
- Principle of Equivalence
- Curvature of Spacetime
- Gravitational Lensing
- Black Holes and Event Horizons
### B. Quantum Mechanics
- **1. Foundations**
- Wave-Particle Duality
- Heisenberg Uncertainty Principle
- Schrödinger Equation (Time-Dependent and Time-Independent)
- **2. Quantum States and Operators**
- Quantum Superposition
- Operators and Observables
- Eigenvalues and Eigenfunctions
- **3. Quantum Phenomena**
- Quantum Tunneling
- Quantum Entanglement and Nonlocality
- Quantum Measurement Problem
- **4. Interpretations of Quantum Mechanics**
- Copenhagen Interpretation
- Many-Worlds Interpretation
- Pilot-Wave Theory
### C. Atomic and Molecular Physics
- **1. Atomic Models**
- Bohr Model
- Quantum Atomic Models
- **2. Electron Configurations**
- Pauli Exclusion Principle
- Hund's Rules
- **3. Spectroscopy**
- Emission and Absorption Spectra
- Laser Physics
### D. Nuclear Physics
- **1. Nuclear Structure**
- Nuclear Forces and Binding Energy
- Models of the Nucleus (Liquid Drop, Shell Model)
- **2. Radioactivity**
- Types of Decay (Alpha, Beta, Gamma)
- Decay Chains and Half-Life
- **3. Nuclear Reactions**
- Fission and Fusion Processes
- Nuclear Reactors and Weapons
- **4. Applications**
- Nuclear Medicine (PET, MRI)
- Radiocarbon Dating
### E. Particle Physics
- **1. Fundamental Particles**
- Quarks and Leptons
- Gauge Bosons (Photon, W/Z Bosons, Gluons)
- Higgs Boson
- **2. The Standard Model**
- Electroweak Interaction
- Quantum Chromodynamics
- **3. Beyond the Standard Model**
- Supersymmetry
- Grand Unified Theories
- [[String Theory]]
- [[Loop Quantum Gravity]]
- [[Causal sets]]
### F. Condensed Matter Physics
- **1. Crystallography**
- Crystal Lattices and Unit Cells
- X-ray Diffraction
- **2. Electronic Properties**
- Band Theory of Solids
- Conductors, Insulators, Semiconductors
- **3. Quantum Hall Effect**
- **4. Superconductivity**
- Meissner Effect
- BCS Theory
---
### A. Stellar Astrophysics
- **1. Star Formation**
- Nebular Hypothesis
- Protostars and Main Sequence
- **2. Stellar Evolution**
- Red Giants and White Dwarfs
- Supernovae and Neutron Stars
- **3. Black Holes**
- Formation and Types
- Hawking Radiation
### B. Galactic Astronomy
- **1. Structure of the Milky Way**
- **2. Types of Galaxies**
- Spiral, Elliptical, Irregular
- **3. Galactic Dynamics**
- Dark Matter Evidence
### C. Cosmology
- **1. Big Bang Theory**
- Cosmic Microwave Background
- Nucleosynthesis
- **2. Cosmic Inflation**
- **3. Dark Energy and Accelerating Universe**
- **4. Multiverse Theories**
---
### A. Biophysics
- Molecular Motors
- Neural Networks
- Biomechanics
### B. Geophysics
- Earth's Magnetic Field
- Plate Tectonics
- Seismology
### C. Chemical Physics
- Reaction Dynamics
- Spectroscopic Methods
### D. Environmental Physics
- Climate Modeling
- Atmospheric Physics
---
### A. Materials Science
- Nanotechnology
- Photonic Materials
- Smart Materials
### B. Quantum Computing
- Qubits and Quantum Gates
- Quantum Algorithms
### C. Plasma Physics
- Fusion Research
- Space Plasmas
### D. Medical Physics
- Imaging Techniques (X-rays, CT scans)
- Radiation Therapy
---
### A. Conservation Laws
- Energy
- Linear and Angular Momentum
- Charge
### B. Symmetry Principles
- Noether's Theorem
- CPT Symmetry
### C. Mathematical Methods
- Differential Equations
- Tensor Calculus
- Group Theory
### D. Measurement and Units
- SI Units
- Dimensional Analysis
- Error Analysis
---
### A. History of Physics
- Classical Era (Aristotle to Newton)
- Modern Era (Einstein to Present)
### B. Philosophy of Science
- Scientific Method
- Paradigm Shifts
### C. Ethics in Physics
- Responsible Conduct of Research
- Implications of Technological Advances
---
### A. Experimental Physics
- Particle Accelerators
- Telescopes and Detectors
### B. Computational Physics
- Numerical Methods
- Simulations and Modeling
### C. Data Analysis
- Statistical Methods
- Machine Learning in Physics
---
This map provides a broad overview of physics, touching upon its many branches and the intricate topics within each. Physics is ever-evolving, with new discoveries and technologies continually expanding our understanding of the universe.
#### Map 2
### Branches
- Physics is a vast field with numerous branches and sub-disciplines, each exploring different aspects of matter, energy, and the fundamental forces of nature. Here's a comprehensive list of the various branches of physics:
### 1. Classical Physics
- Mechanics
- [[Classical mechanics]]
- Continuum Mechanics
- Fluid Mechanics
- Statics
- Dynamics
- Kinematics
- Acoustics
- Thermodynamics
- Heat Transfer
- [[Statistical mechanics]]
- Thermoelectricity
- Electromagnetism
- Electrostatics
- Electrodynamics
- Magnetostatics
- Optics
- Geophysics
### 2. Modern Physics
- Quantum Physics
- [[Quantum mechanics]]
- Quantum Field Theory
- Quantum Electrodynamics
- Quantum Chromodynamics
- Quantum Optics
- Quantum Thermodynamics
- Relativity
- Special Relativity
- General Relativity
- Particle Physics
- Nuclear Physics
- High Energy Physics
- Particle Astrophysics
- Condensed Matter Physics
- Solid State Physics
- Superconductivity
- Semiconductor Physics
- Nanophysics
- Plasma Physics
- Atomic, Molecular, and Optical Physics
- Computational Physics
### 3. Applied Physics
- Medical Physics
- Biophysics
- Chemical Physics
- Geophysics
- Meteorology
- Oceanography
- Environmental Physics
- Engineering Physics
- Acoustics
- Photonics
- Nanotechnology
- Materials Science
### 4. Astrophysics and Cosmology
- Astrophysics
- Stellar Astrophysics
- Galactic Astrophysics
- Extragalactic Astrophysics
- Planetary Science
- Space Physics
- Cosmology
- Physical Cosmology
- Observational Cosmology
- Cosmogony
### 5. Theoretical Physics
- Mathematical Physics
- Classical Field Theory
- Theoretical Mechanics
- Statistical Mechanics
- Theoretical Particle Physics
- Theoretical Astrophysics
- String Theory
### 6. Experimental Physics
- Particle Detectors
- Experimental Techniques and Instrumentation
- Data Analysis Techniques
### 7. Interdisciplinary Fields
- Physical Chemistry
- Atmospheric Physics
- Earthquake Physics
- Psychophysics
- Econophysics
- Agrophysics
- Neurophysics
- Biochemical Physics
- Crystallography
### 8. Emerging Fields
- Quantum Computing
- Quantum Cryptography
- Quantum Information Theory
- Quantum Gravity
- Dark Matter and Dark Energy Studies
- Gravitational Wave Astronomy
### Map of mathematics of physics
Here's the text with [[ ]] added around the topics according to your instructions:
[[Classical mechanics]]:
- [[Calculus]]: derivatives, integrals, differential equations (ordinary and partial), variational calculus
- [[Linear algebra]]: vectors, matrices, eigenvalues, eigenvectors
- [[Variational principles]]: Euler-Lagrange equations, Hamilton's principle
- [[Lagrangian and Hamiltonian mechanics]]: generalized coordinates, phase space, Poisson brackets
- [[Dynamical systems]]: stability analysis, bifurcations, chaos theory
- [[Perturbation theory]]: regular and singular perturbations
- [[Numerical methods]]: Runge-Kutta, finite difference, finite element
[[Electromagnetism]]:
- [[Vector calculus]]: gradient, divergence, curl, Stokes' theorem, Green's theorem
- [[Partial differential equations]]: Maxwell's equations, wave equation, Helmholtz equation
- [[Complex analysis]]: analytic functions, Cauchy-Riemann equations, residue theorem
- [[Tensor analysis]]: electromagnetic field tensor, stress-energy tensor
- [[Differential forms]]: exterior derivative, Hodge star operator
- [[Gauge theory]]: gauge transformations, fiber bundles, connections
- [[Numerical methods]]: finite difference time domain (FDTD), method of moments (MoM)
[[Thermodynamics and Statistical Mechanics]]:
- [[Probability theory]]: random variables, probability distributions, central limit theorem
- [[Differential equations]]: transport equations, Fokker-Planck equation
- [[Multivariate calculus]]: Jacobians, Hessians, Lagrange multipliers
- [[Linear algebra]]: matrix exponentials, eigenvalue problems
- [[Information theory]]: entropy, mutual information, Kullback-Leibler divergence
- [[Stochastic processes]]: Markov chains, Brownian motion, Langevin equation
- [[Monte Carlo methods]]: Metropolis-Hastings algorithm, Gibbs sampling
[[Quantum mechanics]]:
- [[Linear algebra]]: Hilbert spaces, linear operators, eigenvalues, eigenvectors
- [[Differential equations]]: Schrödinger equation, Dirac equation, Klein-Gordon equation
- [[Probability theory]]: Born rule, density matrices, quantum measurement
- [[Group theory]]: symmetries, representations, Lie groups, Lie algebras
- [[Functional analysis]]: self-adjoint operators, spectral theory, Banach spaces
- [[Perturbation theory]]: time-independent and time-dependent perturbation theory
- [[Numerical methods]]: finite difference, variational methods, quantum Monte Carlo
[[Quantum field theory]]:
- [[Tensor analysis]]: Lorentz transformations, spinors, Clifford algebras
- [[Group theory]]: Lie groups (U(1), SU(2), SU(3)), Lie algebras, representation theory
- [[Differential geometry]]: fiber bundles, connections, curvature, characteristic classes
- [[Topology]]: homotopy groups, homology, cohomology, index theorems
- [[Complex analysis]]: dispersion relations, Feynman integrals, renormalization
- [[Functional analysis]]: path integrals, operator algebras, BRST quantization
- [[Perturbation theory]]: Feynman diagrams, renormalization group, effective field theories
- [[Lattice field theory]]: lattice gauge theory, lattice QCD
[[General Relativity]]:
- [[Differential geometry]]: manifolds, tangent spaces, differential forms, Riemannian geometry
- [[Tensor analysis]]: Riemann curvature tensor, Ricci tensor, energy-momentum tensor
- [[Partial differential equations]]: Einstein field equations, wave equations in curved spacetime
- [[Variational principles]]: Einstein-Hilbert action, Palatini formalism
- [[Topology]]: causal structure, singularity theorems, black hole thermodynamics
- [[Numerical relativity]]: ADM formalism, BSSN formalism, pseudospectral methods
[[Particle Physics]]:
- [[Group theory]]: representation theory, Lie groups (U(1), SU(2), SU(3)), grand unification
- [[Differential geometry]]: gauge theories, spontaneous symmetry breaking, Higgs mechanism
- [[Topology]]: instantons, monopoles, solitons, anomalies
- [[Complex analysis]]: dispersion relations, analytic S-matrix theory
- [[Functional analysis]]: path integrals, operator product expansion, conformal field theory
- [[Perturbative QCD]]: Feynman diagrams, parton model, factorization theorems
- [[Lattice QCD]]: discretization of QCD, numerical simulations
[[Condensed Matter Physics]]:
- [[Differential equations]]: Schrödinger equation, Ginzburg-Landau theory, Bogoliub
ov-de Gennes equations
- [[Linear algebra]]: tight-binding models, Wannier functions, Bloch functions
- [[Probability theory]]: stochastic processes, master equations, fluctuation-dissipation theorem
- [[Topology]]: topological insulators, Berry phase, Chern numbers
- [[Group theory]]: space groups, point groups, representation theory
- [[Many-body theory]]: Green's functions, Feynman diagrams, renormalization group
- [[Numerical methods]]: density functional theory (DFT), quantum Monte Carlo, tensor networks
[[Fluid Dynamics]]:
- [[Partial differential equations]]: Navier-Stokes equations, Euler equations, Boltzmann equation
- [[Vector calculus]]: vorticity, circulation, Kelvin's theorem, Helmholtz decomposition
- [[Complex analysis]]: conformal mapping, potential flow, Joukowsky transform
- [[Perturbation theory]]: boundary layer theory, Kolmogorov's theory of turbulence
- [[Numerical methods]]: finite volume methods, spectral methods, lattice Boltzmann methods
[[Plasma Physics]]:
- [[Partial differential equations]]: magnetohydrodynamic (MHD) equations, Vlasov equation
- [[Kinetic theory]]: Boltzmann equation, Fokker-Planck equation, quasilinear theory
- [[Statistical mechanics]]: BBGKY hierarchy, kinetic equations
- [[Fluid dynamics]]: ideal MHD, resistive MHD, two-fluid models
- [[Numerical methods]]: particle-in-cell (PIC) methods, gyrokinetic simulations
[[Astrophysics and Cosmology]]:
- [[General relativity]]: Friedmann equations, cosmic microwave background, gravitational lensing
- [[Fluid dynamics]]: stellar structure, accretion disks, shock waves
- [[Nuclear physics]]: nucleosynthesis, stellar evolution, supernovae
- [[Particle physics]]: dark matter, neutrino astrophysics, cosmic rays
- [[Statistical mechanics]]: galaxy clustering, large-scale structure, cosmological perturbation theory
- [[Numerical methods]]: N-body simulations, smoothed particle hydrodynamics (SPH), adaptive mesh refinement (AMR)
[[Mathematical Physics (general tools)]]:
- [[Differential equations]]: Sturm-Liouville theory, Green's functions, solitons
- [[Functional analysis]]: Hilbert spaces, Banach spaces, distributions, Sobolev spaces
- [[Operator theory]]: unbounded operators, spectral theory, C*-algebras
- [[Probability theory]]: stochastic processes, stochastic differential equations, large deviations
- [[Topology]]: algebraic topology, differential topology, Morse theory
- [[Differential geometry]]: symplectic geometry, Poisson geometry, Kähler manifolds
- [[Lie groups and algebras]]: representation theory, structure theory, Haar measure
- [[Variational principles]]: calculus of variations, optimal control theory, conservation laws
- [[Integrable systems]]: inverse scattering transform, Lax pairs, Painlevé transcendents
- [[Nonlinear dynamics]]: bifurcation theory, pattern formation, synchronization
- [[Numerical analysis]]: finite element methods, spectral methods, wavelets